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We present the first study of subwavelength discrete solitons in nonlinear metamaterials: nanoscaled
periodic structures consisting of metal and nonlinear dielectric slabs. The solitons supported by such
media result from a balance between tunneling of surface plasmon modes and nonlinear self-trapping. The
dynamics in such systems, arising from the threefold interplay between periodicity, nonlinearity, and
surface plasmon polaritons, is substantially different from that in conventional nonlinear dielectric
waveguide arrays. We expect these phenomena to inspire fundamental studies as well as potential
applications of nonlinear metamaterials, particularly in subwavelength nonlinear optics.
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Metamaterials have recently attracted widespread inter-
est due to their intriguing properties not found in naturally
occurring materials, and their potential for new applica-
tions such as negative refraction, reversed Doppler effect,
and Cerenkov radiation [1,2], as well as electromagnetic
(EM) cloaking of arbitrary shaped objects [3]. There has
been a growing interest in nonlinear metamaterials as they
exhibit new types of nonlinear phenomena such as second-
harmonic generation from split-ring resonators [4], dis-
crete breathers in split-ring arrays [5], and controllable
transition between left-handed and right-handed material
properties [6]. Metamaterials also provide an excellent
means to pursue subwavelength optics, which has great
impact on imaging, lithography, sensing, and data storage.
The strong modal confinement of surface plasmon polar-
itons (SPPs) in metal-dielectric composites [7], was uti-
lized to demonstrate extraordinary transmission through
subwavelength hole arrays [8] and subdiffraction-limited
imaging with superlens [9].

An important subset of metamaterials is subwavelength
metal-dielectric multilayers (MDMLs): periodic structures
consisting of nanoscaled metallic and dielectric slabs [10].
In these structures, SPPs can tunnel between adjacent
layers giving rise to Bloch-like modes carrying the signa-
ture of the SPPs [11]. MDMLs have also been studied in
the nonlinear regime, where the relatively high nonlinear
coefficient of copper was utilized [12,13]. In what follows,
we show that a MDML with nonlinear (Kerr-type) dielec-
tric can exhibit self-focusing of light, and form subwave-
length discrete solitons characterized by intriguing features
that have not been reported so far.

Discrete (or ‘‘lattice’’) solitons have been observed in
many areas of science, such as biology [14], solid state
physics [15], and Bose-Einstein condensates (BEC) [16].
In optics, solitons in nonlinear lattices have been proposed
[17] and observed in dielectric waveguide arrays
(DWGAs) under self-focusing [18,19] and self-defocusing
[20,21] nonlinearities. In these settings, the nonlinearity
can balance the light tunneling between neighboring wave-
guides, resulting in self-localization and stationary propa-

gation. Subsequent investigations have analyzed lattice
solitons that originate from higher bands [22,23]. In all
previous work, the soliton dimension and the periodicity of
the system are much larger than the excitation wavelength.

Here, we present the first study of subwavelength dis-
crete solitons in nonlinear MDMLs, at visible and near-
infrared frequencies. These solitons manifest unique fea-
tures arising from the threefold interplay between period-
icity, nonlinearity, and SPPs tunneling, and display anoma-
lous behaviors comparing to solitons in uniform dielectric
media and conventional DWGAs.

We start by calculating the eigenmodes of a linear
MDML, schematically shown in Fig. 1(a). In contrast to
[17–24], the assumptions of the slowly varying amplitude
and small variation in the dielectric function are no longer
valid for subwavelength structures as discussed here. We
derive the governing eigenproblem directly from
Maxwell’s equations
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where c is the speed of light in vacuum, ~E and ~H are the
electric and magnetic fields, respectively, "�x; z� is the
spatially varying dielectric permittivity, and the magnetic
permeability � is set to be 1. We solve Eq. (1) for time-
harmonic propagation along the z axis, taking into account
the transverse magnetic (TM) nature of the SPPs waves [7]
[i.e., ~H � Hyŷ and ~E � Exx̂� Ezẑ, see the coordinates in
Fig. 1(a)]. By properly rearranging Eq. (1), and introducing
a ‘‘Hamiltonian’’ operator Ĥ�x� � @
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where k0 � 2�=�0 (�0 is the wavelength in vacuum).
The EM eigenmodes of such a system maintain their

envelopes during propagation, that is,

 Hy�x; z� � ~Hy�x�e
�i�z Ex�x; z� � ~Ex�x�e

�i�z (3)
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where � indicates the propagation constant. Substituting
Eq. (3) into Eq. (2) we obtain the eigenvalue problem

 M̂�x� ~��x� � � ~��x�; M̂�x� �
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(4)

where ~� � � ~Hy; ~Ex�
T .

The eigenproblem in Eq. (4) is calculated numerically
by considering the boundary conditions for the EM fields at
the metal-dielectric interfaces. The solutions of Eq. (4)
form a set (or a band) of eigenvalues representing the linear
propagation constants supported by the system [11]. In
what follows, we choose the dielectric slab width td �
26 nm, and metal slab width tm � 16 nm. The dielectric
linear refractive index is n �

�����
"d
p

� 1:5, and the metal
relative permittivity at �0 � 632:8 nm is taken to be "m �
�17 (the effect of metal loss will be discussed later) [25].
The variation of � with the transverse momentum kx
shown in Fig. 1(b) presents a trend opposite to the one
for conventional DWGAs. Namely, ��kx � 0� is smaller
than ��kx � �=D�. Interestingly, the modal profiles of
tangential fields are identical to those of the second-band
modes of a paraxial DWGA [23], and correspond to ‘‘nega-
tive’’ coupling between neighboring waveguides. As a
result, the curvature of the band (i.e., the 2nd derivative)
is positive at kx � 0, and negative at kx � �=D, indicating
that the diffraction of a localized wave packet is anomalous
at kx � 0 and normal at kx � �=D, in a sharp contrast to
what is observed in DWGAs [24]. This phenomenon is
presented by the insets in Fig. 1(b), where a narrow wave
packet at kx � 0 (kx � �=D) is shown to acquire a con-
cave (convex) phase front as it propagates through the
media and diffracts.

Such diffraction, resulting from SPPs tunneling between
neighboring layers, can be arrested when the refractive
index of the dielectric layers is intensity dependent. For
example, the permittivity of Kerr optical materials varies
linearly with the intensity, namely, "�j ~Ej2� � "r �
2�

�����
"r
p

n2j ~Ej2, where ~E is the local electric field, "r the
linear relative permittivity, n2 is the Kerr coefficient, and
� � �1 (� � �1) correspond to self-focusing (self-

defocusing) nonlinearity. As self-focusing (defocusing)
nonlinearity can balance normal (anomalous) diffraction
[17–21], solitons originating at kx � �=D �kx � 0� will
form under a self-focusing (defocusing) nonlinearity.

We utilize the self-consistency method [23] to solve
Eq. (4) in the nonlinear case. The solution provides the
transverse magnetic ( ~Hy) and electric ( ~Ex) fields of the
nonlinear eigenmodes. Then, the longitudinal electric field
( ~Ez) can be directly derived from Maxwell’s equations, that
is, ~Ez � �i�k0"�

�1@ ~Hy=@x.
The electric fields of the nonlinear localized modes are

given in Fig. 2(a) for the mode originating at the kx � 0
point (under self-defocusing nonlinearity), and in Fig. 2(c)
for the mode originating in kx � �=D (under self-focusing
nonlinearity). The intensities of these two localized modes
are presented in Figs. 2(b) and 2(d), respectively. For
maximum nonlinear index change of �nmax � 0:04 [26],
the mode at kx � �=D displays a full width at half maxi-
mum (FWHM) of 190 nm, smaller than the diffraction
limit in the dielectric host (1:22�0=2n � 250 nm). On
the other hand, the mode at kx � 0 has a much broader
FWHM for the same magnitude of nonlinear index change
(but with an opposite sign), due to the different magnitudes
of the band curvature at kx � 0 and at kx � �=D. The
larger band curvature at kx � 0 results in a beam diffrac-
tion that is stronger than that around the kx � �=D point.
Since the soliton is a result of the balance between diffrac-
tion and nonlinearity, the same magnitude of nonlinearity
will result in a larger mode size at kx � 0. This is in sharp
contrast to the discrete systems discussed in [17–21],
where the band structure is approximated by cos�kxD�
(‘‘tight binding model’’).

In order to study the actual propagation of a soliton in
the MDML, we use a modified form of the ‘‘split-step
Fourier’’ beam propagation method (BPM) [27]. The
propagation operator M̂ is taken to be the sum of two oper-
ators, that is, M̂�z� � M̂L � M̂NL�z� with M̂L representing
the linear propagation in the MDMLs [28], while M̂NL is
the contribution of the nonlinear index change. The fields
at the point z� �z along the propagation direction can be
obtained from the fields at z, namely ~��z��z� �
exp�M̂NL�z� exp�M̂L�z� ~��z�. This way, we simulate the
propagation of an initial mode profile ~��0� calculated by
the self-consistency method. In what follows, we focus on
the propagation of the localized mode from kx � �=D, as
it features subwavelength characteristics for the parame-
ters given above.

Figures 2(e) and 2(f) present the propagation simula-
tions over 4 �m in linear and nonlinear MDMLs, respec-
tively. At low intensities, SPPs tunnel between neighboring
slabs, resulting in linear diffraction of the initial wave
packet [Fig. 2(e)]. However, when the proper intensity
(calculated by the self-consistency method) is applied,
the wave packet maintains its original shape during propa-
gation [Fig. 2(f)]. Comparing Figs. 2(e) and 2(f) clearly
demonstrates the self-focusing effect and the formation of
the lattice solitons under proper nonlinearity.
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FIG. 1 (color online). (a) Schematic of MDMLs.
(b) Diffraction-relation diagram (propagation constant vs trans-
verse momentum). The insets show the transverse electric field
of a diffracting narrow beam originating from the kx � 0 and
kx � �=D points in the momentum space.
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The soliton propagation along a MDML can be dramati-
cally affected by the mode’s power dissipation in the metal,
as shown in Figs. 2(g) and 2(h). Although Ohmic loss is an
intrinsic property of the metal and depends solely on the
incident frequency, the dissipation of a given mode de-
pends on the system’s geometry and varies between the
system’s eigenmodes according to the modal distribution;
i.e., a mode with a large portion of its electric field residing
in the metal will experience high loss. Figures 2(c) and 2(d)
depict the substantial electric field inside the metal at kx �
�=D, hence, one can expect a higher mode loss. The
dissipation coefficient can be directly obtained from the
imaginary part of the propagation constant �, calculated
from Eq. (4) for a complex metal permittivity ("m �
�17� 0:69i for silver at 632.8 nm [25]). The dissipation
coefficient is 2 Im��0� � 658 cm�1 for the kx � 0 mode,
and 2 Im���=D� � 7800 cm�1 for the kx � �=D mode,
which corresponds to the decay length of 15:2 and

1:3 �m, respectively. The decay length of the kx � �=D
mode is shorter than its diffraction length (the distance at
which the linearly propagating beam doubles its initial
width). Hence, the linear and nonlinear propagation can
be hardly distinguished experimentally.

One way to overcome the problem of the short mode
propagation length is to introduce gain into the dielectric
medium, by using, for example, a quantum well or quan-
tum dot system [29]. From Eq. (4), we find that the required
gain coefficients are �0 � 400 cm�1 and ��=D �
2700 cm�1. Those levels of gain, while within the theo-
retically possible limits, are extremely high, hence, render-
ing the underlying configuration somewhat impractical.

To provide a feasible way for experimental observation
of subwavelength solitons we set the working wavelength
to 1:55 �m, and fix the widths of the silver and the
dielectric slabs at 28 and 60 nm, respectively. Changing
the working wavelength results in a decrease of the power
transferred through the metal, due to the increasing ratio
between the real parts of the dielectric constants ("m �
�130� 3:68i) [25]. Consequently, the modes’ propaga-
tion loss is substantially decreased. Moreover, the de-
creased field penetration to the metal, together with the
increased metal slab width, results in a significantly weaker
coupling (tunneling) between neighboring slabs. As a re-
sult, the propagation band flattens and becomes more
symmetric compared to that in the visible range.

The electric field components of the localized modes
with a moderate index change of 0.02 are given in Fig. 3(a)
for the kx � 0 mode and in Fig. 3(c) for kx � �=D,
respectively. The corresponding intensities are presented
in Figs. 3(b) and 3(d). In contrast to the previous case, here
both modes exhibit subwavelength widths of 420 nm.
Furthermore, since the modal effective index is neff �
�=k0 � 1:78, the mode size is lower than the diffraction
limit in the MDMLs (1:22�0=2neff � 530 nm), and can be
reduced to �200 nm if nonlinear index change of 0.1 is
used [26]. Hence, we choose to focus on the mode at kx �
0, whose propagation loss �0 � 123 cm�1 (decay length
of 80 �m) is much smaller than the kx � �=D mode with
��=D � 1280 cm�1 (decay length of 7:8 �m).

Figures 3(e) and 3(f) compare the linear and nonlinear
propagation of the mode at kx � 0 in lossless MDMLs,
showing stationary propagation over more than two dif-
fraction lengths when nonlinearity is applied. To realize a
practical experiment, we have simulated the linear and
nonlinear propagation of a simple Gaussian beam at a
width of 380 nm in MDMLs with the metal loss taken
into account [Figs. 3(g) and 3(h), respectively]. While the
linearly propagating beam doubles its width after 20 �m,
the nonlinearly propagating wave packet maintains its
original shape (with somewhat attenuated intensity).
Thus, an experimental observation of subwavelength dis-
crete solitons can be realized even without a gain medium.
On the other hand, perfect solitary propagation requires a
moderate gain of �0 � 100 cm�1.

FIG. 2 (color online). Nonlinear localized EM modes in
MDMLs with period of 42 nm at an incident wavelength of
632.8 nm. (a),(c) Transverse ( ~Ex, solid line) and longitudinal ( ~Ez,
dashed line) electric field distributions of the solitons arising
from the points in momentum space, kx � 0 and kx � �=D,
respectively. The horizontal dotted line indicates the zero field.
The white and shaded regions represent the metal and dielectric
slabs, respectively. (b),(d) Intensity distribution of the same
modes. (e) Linear and (f) nonlinear propagation of the kx �
�=D mode over 4 �m distance in lossless MDMLs. (g) Linear
and (h) nonlinear propagation of the same mode along 2 �m in a
MDML when the silver’s loss is taken into account.
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A recent study has shown formation of spatial solitons in
a Kerr medium embedded between two semi-infinite met-
als [30]. Such solitons originate from the balance between
diffraction in the homogeneous medium and the Kerr
nonlinearity, and are inherently different than the solitons
arising from the nonlinear counteraction of the SPPs tun-
neling, presented in this Letter. Moreover, the subwave-
length mode size, claimed in [30], is not due to the
nonlinear diffraction arrest; it arises from the SPP linear
confinement in the direction normal to the plane of propa-
gation. In this Letter, we present the first subwavelength
SPP soliton with the mode size determined entirely by the
interplay between SPPs tunneling and Kerr nonlinearity.

To summarize, we have theoretically shown subwave-
length discrete solitons in nonlinear MDMLs. The forma-
tion of such solitons is a result of the threefold interplay
between periodicity, nonlinearity, and surface plasmons
tunneling, leading to new and intriguing phenomena that
are not found in nonlinear DWGAs. We have addressed the
issue of the intrinsic loss in such structures, calculated the
gain required to compensate such losses, and suggested a
feasible configuration in which subwavelength discrete
solitons could be experimentally observed. We expect

that these exciting findings will inspire both experimental
and theoretical efforts towards studies of a wide range of
nonlinear metamaterials, for applications in the emerging
field of subwavelength nonlinear optics.
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FIG. 3 (color online). Nonlinear localized EM modes in
MDMLs with period of 88 nm at an incident wavelength of
1:55 �m. (a)–(d) are the same as Figs. 2(c) and 2(d). (e) Linear
and (f) nonlinear propagation of the kx � 0 mode over 40 �m
distance in lossless MDMLs. (g) Linear and (h) nonlinear propa-
gation of a wave packet excited by a Gaussian beam along
20 �m in a MDML when the silver’s loss is taken into account.
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