Spontaneous Exciton Valley Coherence in Transition Metal Dichalcogenide Monolayers Interfaced with an Anisotropic Metasurface

Pankaj K. Jha,1,† Nir Shitrit,1,† Xuexin Ren,1 Yuan Wang,1 and Xiang Zhang1,2,∗

1NSF Nanoscale Science and Engineering Center (NSEC), 3112 Eichheray Hall, University of California, Berkeley, California 94720, USA
2Materials Sciences Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA

(Received 20 April 2018; published 11 September 2018)

The control of the exciton intervalley coherence renders transition metal dichalcogenides monolayers promising candidates for quantum information science. So far, generating intervalley coherence has the need for an external coherent field. Here, we theoretically demonstrate spontaneous generation (i.e., without any external field) of exciton intervalley coherence. We achieve this by manipulating the vacuum field in the vicinity of the monolayer with a designed polarization-dependent metasurface, inducing an anisotropic decay rate for in-plane excitonic dipoles. Harnessing quantum coherence and interference effects in two-dimensional materials may provide the route for novel quantum valleytronic devices.

DOI: 10.1103/PhysRevLett.121.116102

Coherent superposition of states (i.e., quantum coherence) is a fundamental feature of quantum mechanics, marking its departure from the classical realm [1]. For elementary particles, such as atoms, ions, and photons, quantum coherence is an essential ingredient for a plethora of phenomena in quantum optics [2], quantum information science [3], and condensed matter physics [4]. In semiconductors, excitons (Coulomb-bound electron-hole pairs) which are the fundamental quasiparticles, also exhibit coherence. Excitonic coherence plays a crucial role in quantum harvesting dots [5], quantum-well structures [6], and light-harvesting complexes [7]. Recently, atomically thin transition metal dichalcogenides (TMDCs) of the form \(MX_2 \) (\(M = \text{Mo, W}; X = \text{S, Se, Te} \)) have emerged as a new class of semiconductor materials for both fundamental physics exploration in two-dimensional systems and device applications [8–10]. These monolayer semiconductors are manifested by a direct band gap between the extrema of valence and conduction bands residing at the energy-degenerate \(K \) and \(K' \) points of the Brillouin zone. Owing to the broken inversion symmetry in monolayer TMDCs, excitons exhibit valley-dependent optical selection rule [11,12]. More specifically, excitons in the \(K \) and \(K' \) valleys are coupled to photons with the same energy but mutually orthogonal polarization helicities \(\sigma_\pm \), respectively.

Harnessing the valley degree of freedom in TMDC monolayers for quantum information processing requires coherent manipulation of excitons in the \(K \) and \(K' \) valleys, in addition to the inherent selective excitation. The coherence among the valleys (optical alignment of excitons), i.e., valley coherence, was revealed by the observation of a linearly polarized emission (coherent superposition of \(\sigma_\pm \) photons) from a TMDC monolayer optically excited by a linearly polarized light [13]. However, all previous approaches to generate valley coherence require the presence of an external coherent field [13–19]. In this Letter, we theoretically demonstrate that intervalley coherence can be spontaneously generated in TMDC monolayers without any external field. We achieve this neutral exciton intervalley coherence by manipulating the vacuum field in the vicinity of the TMDC monolayer with a designed light molding interface (metasurface), exhibiting an in-plane polarization-dependent response. Note that the optical selection rule [11,12] forbids such a vacuum-induced coherence among mutually orthogonal \(K \) and \(K' \) valleys in free space. The spontaneous exciton valley coherence in TMDC monolayers opens a new paradigm in two-dimensional materials, exploiting quantum interference effects for optoelectronic applications [10,20] and novel valleytronic devices [21].

We considered an atomically thin layer (monolayer) of TMDC of type \(MX_2 \) interfaced with a two-dimensional array of subwavelength-spaced optical nanoantenna phase shifters—a metasurface (Fig. 1). Photonic metasurfaces enable a custom-tailored electromagnetic response with unprecedented control over the fundamental properties of light, i.e., phase, amplitude, and polarization [22–24]. We assumed that initially one electron is excited to the lowest level of the conduction band of the \(K \) valley (\(c_K \)). In free space, which is a homogeneous, isotropic, and linear medium, this excited electron returns to the ground state (i.e., highest level of the valence band \(v_K \)) by emitting a photon corresponding to the \(c_K \leftrightarrow v_K \) transition. The transient response of the population is given by \(\gamma e^{-\gamma t} \) and the emission cannot excite the orthogonal \(K' \) valley electron. However, by breaking the isotropic nature of the quantum vacuum [25] in the vicinity of the TMDC
monolayer, the emission from the K valley can radiatively excite the electron in the K' valley and vice versa.

The electron-hole pair at the valleys of the TMDC monolayer can be treated as a local in-plane excitonic dipole. The interaction between such a quantum emitter and its spontaneous emission that is molded by the metasurface yields an anisotropic quantum vacuum. We consider the position of the excitonic dipole to itself for both x and y polarizations of the dipole; however, the scattered field at the location of the dipole for these polarizations reverses sign (i.e., π-phase shifted). Such a polarization-dependent response of the metasurface gives rise to an anisotropic decay rate, in which, for one polarization of the dipole, the decay rate is enhanced, while for the second polarization, the decay rate is symmetrically suppressed.

The light bending by the metasurface of all light paths from source to interface and from interface to source [see Fig. 3(a)] is optically equivalent to compensation of the phase accumulated via propagation through free space by the phase shift imparted by the metasurface. The required anisotropic response was realized by a geometric phase-based metasurface (GPM), wherein the polarization helicity is a degree of freedom. The pickup of the geometric Pancharatnam-Berry phase [27,28] in metasurfaces arises from space-variant manipulation of the polarization state of light, enabled by tilling a surface with anisotropic nano-antennas arranged according to an on-demand space-variant orientation angle profile $\theta(x,y)$ [22,29–33]. A GPM converts an incident circularly polarized light into a beam of opposite circular polarization, imprinted with a geometric phase $\Phi(x,y) = 2\sigma_\pm \theta(x,y)$, where $\sigma_\pm = \pm 1$ is the polarization helicity of the incident light corresponding to right and left circularly polarized light, respectively [22,29–33]. Here, we imprint opposite phase profiles to the projected circular polarization states of the incident field $\mathbf{E}(z = 0^+, \mathbf{r}, \omega)$, where $\mathbf{r} = (x, y, 0)$ is the vector position at the metasurface plane, and ω is the atomic $|c_K\rangle \leftrightarrow |v_K\rangle$ transition frequency. Subsequently, we expressed the transverse x and y components of the reflected field just above the metasurface as

$$\mathbf{E}_r(z = 0^+, \mathbf{r}, \omega) = -\sqrt{\eta} \mathbf{U}^{-1} \left(\begin{array}{cc} 0 & e^{-i\Phi(x,y)} \\ e^{i\Phi(x,y)} & 0 \end{array} \right) \mathbf{U} \mathbf{E}(z = 0^+, \mathbf{r}, \omega).$$ \hspace{1cm} (1)$$

Here, η is the cross-polarization reflectivity of the metasurface, $\mathbf{U} = \frac{1}{\sqrt{2}} \left(\begin{array}{cc} i & i \\ -i & -i \end{array} \right)$ is a unitary conversion matrix transforming from the Cartesian basis to helicity basis, and $\Phi(x,y)$ is the imprinted phase profile for right-handed circularly polarized light. The off-diagonal matrix represents the interaction of circularly polarized light with the metasurface, where the off-diagonal terms are associated with the flipping of the circular polarizations by the metasurface. Finally, by employing the Huygens-Fresnel diffraction integral, the scattered field at the desired point is calculated [26].

We engineer an anisotropic quantum vacuum by introducing a designed interface that its role is to refocus the emitted light from the excitonic dipole to itself for both x and y polarizations of the dipole; however, the scattered field at the location of the dipole for these polarizations reverses sign (i.e., π-phase shifted). Such a polarization-dependent response of the metasurface gives rise to an anisotropic decay rate, in which, for one polarization of the dipole, the decay rate is enhanced, while for the second polarization, the decay rate is symmetrically suppressed. The light bending by the metasurface of all light paths from source to interface and from interface to source [see Fig. 3(a)] is optically equivalent to compensation of the phase accumulated via propagation through free space by the phase shift imparted by the metasurface. The required anisotropic response was realized by a geometric phase-based metasurface (GPM), wherein the polarization helicity is a degree of freedom. The pickup of the geometric Pancharatnam-Berry phase [27,28] in metasurfaces arises from space-variant manipulation of the polarization state of light, enabled by tilling a surface with anisotropic nano-antennas arranged according to an on-demand space-variant orientation angle profile $\theta(x,y)$ [22,29–33]. A GPM converts an incident circularly polarized light into a beam of opposite circular polarization, imprinted with a geometric phase $\Phi(x,y) = 2\sigma_\pm \theta(x,y)$, where $\sigma_\pm = \pm 1$ is the polarization helicity of the incident light corresponding to right and left circularly polarized light, respectively [22,29–33]. Here, we imprint opposite phase profiles to the projected circular polarization states of the incident field via a GPM to achieve the prescribed anisotropic quantum vacuum. We consider the position of the excitonic dipole at $(0,0,d)$, where d is the distance between the quantum emitter and the metasurface [see Fig. 3(a)]. Accordingly, the phase profile imprinted at the metasurface is $\Phi(x,y) = -2k\sigma_\pm (\sqrt{x^2 + y^2 + d^2} - \pi)$, where x and y are the metasurface coordinates, $k = 2\pi/\lambda$ is the wave number, and λ is the wavelength corresponding to the $|c_K\rangle \leftrightarrow |v_K\rangle$ atomic transition. We realized this phase
[Fig. 2] Geometric phase-based metasurface for an anisotropic quantum vacuum. (a),(b) Phase profiles for molding the incident light with right circular polarization (RCP) and left circular polarization (LCP), respectively, at a free-space wavelength of $\lambda = 670$ nm and a height of the dipole from the metasurface of $d = 10a$. The polarization helicity-dependent phase profiles are presented by the heat map and the corresponding metasurface realization, i.e., a nanorod antenna array with space-variant orientations $\theta(x, y)$, is shown on top. The width (x dimension) and length (y dimension) of each nanorod are 200 and 80 nm, respectively, and the thickness is 30 nm. The individual antenna design relies on a gap plasmon resonator nanoantenna consisting of metal-insulator-metal layers, enabling high reflectivity by increasing the coupling between the free wave and the fundamental resonator mode (Fig. 2(b)). The individual antenna is a gap plasmon resonator nanoantenna with a 30-nm-thick silver nanorod, a 110-nm-thick dielectric (MgF$_2$) spacer layer, and a 130-nm-thick silver layer acting as a back reflector. We used a set of 16 nanoantenna orientations mimicking phase shifters with a $\pi/8$ phase increment. (c) Wavelength-dependent reflection efficiency of the GPM. By optimizing the dimensions of the nanorod, we achieved a broadband high cross-polarization reflectivity (90%) and an extremely low copolarization reflectivity ($\sim 0.1\%$), yielding a highly efficient GPM. The dots highlight the reflectivities at 670 nm, which is the resonant wavelength for the MoS$_2$ monolayer.

By applying the method of dipole-metasurface interaction [26], we obtained the distribution of the scattered field intensity for x- and y-polarized source dipoles, where the efficient light focused back via the metasurface to the quantum emitter is evident [Fig. 3(a)]. We also calculated the imaginary part of the scattered field at varying x positions to reveal that the metasurface-governed scattered field at the position of the dipole is minimized for an x-polarized dipole while symmetrically maximized for a y-polarized dipole [Fig. 3(b)]. Note that we designed the phase profile of the metasurface such that the imaginary part of the scattered field is predominant, while the real part is suppressed. By considering a finite size metasurface, the Ohmic loss due to the metal, and the phase discretization loss [37], we achieved that $\sim 47\%$ of the dipole source field emission is focused back to the dipole. Such a polarization-dependent scattered field E_s results in an engineered anisotropic decay rate γ of the quantum emitter as [38]

$$\frac{\gamma(r_1)}{\gamma_0} = 1 + \frac{6\pi\varepsilon_0}{|\varphi|^2 k^2} \text{Im}[\varphi \cdot E_s(r_1, r_1, \omega)].$$

Here, γ_0 is the vacuum spontaneous emission decay rate, r_1 is the position vector of the dipole, ε_0 is the vacuum permittivity, and φ is the transition dipole moment of the excitonic dipole. Therefore, the reversed sign of the scattered field at the location of the dipole for x- and y-polarized dipoles [Fig. 3(b)] gives rise to an anisotropic quantum vacuum, where the engineered normalized decay rate is suppressed (0.53) and symmetrically enhanced (1.47) for x- and y-polarized dipoles, respectively [Fig. 3(c)]. Note that, in the ideal limit of a lossless and infinitely large GPM, the change in the normalized decay rate is 0.5 [see red and blue lines in Fig. 3(c)]. See Supplemental Material [36], Secs. 2 and 3 for the wavelength- and distance-dependent responses of the metasurface-enabled anisotropic decay rate, respectively, and Sec. 4 for the effect of the metasurface size on the engineered decay rate.

The interaction between the quantum vacuum field (i.e., quantum state with the lowest possible energy in the absence of excitations) and the exciton in the TMDC
The scattered field intensity (\sim decay rates and the intervalley scattering rate γ) is enabled by the GPM, where the normalized decay rate for the scattered field is E_0, which is the imaginary part of the field induced by the dipole at its position. (c) An anisotropic decay rate is enabled by the GPM, where the normalized decay rate for x- (y-polarized) and y-polarized dipoles (y_K) is suppressed (0.53) and symmetrically enhanced (1.47), respectively.

FIG. 3. Metasurface-induced anisotropic decay rate. (a) Simulated scattered field intensity ($|E_i|^2$) distribution for the excitonic-dipole source located at $(0, 0, 10\lambda)$ and oriented along the x axis. The distribution is shown in the x-z plane, where the metasurface lies in the $z = 0$ plane. With an optimized design, we achieved \sim47% reflection of the incident field focused back towards the on-demand location of the dipole (50% is the upper limit). The scattered field intensity ($|E_i|^2$) distribution for a y-polarized dipole is identical. (b) Nondegenerate imaginary part of the scattered field. At the position of the dipole (i.e., $x = 0$), for x- and y-polarized dipoles, the imaginary part of the scattered field is π-phase shifted, i.e., minimized for an x-polarized dipole while symmetrically maximized for a y-polarized dipole. The upper limit for the scattered field is E_0, which is the imaginary part of the field induced by the dipole at its position. (c) An anisotropic decay rate is enabled by the GPM, where the normalized decay rate for x- (y-polarized) and y-polarized dipoles (y_K) is suppressed (0.53) and symmetrically enhanced (1.47), respectively.

A monolayer of TMDCs gives rise to the emergence of intervalley coherence. In the interaction picture, the density operator $\rho_c(t)$ of the combined exciton-field system satisfies the Liouville-von Neumann equation [39]

$$\frac{\partial \rho_c}{\partial t} = -\frac{i}{\hbar} [\mathcal{H}, \rho_c] - \mathcal{L} \rho_c. \quad (3)$$

Here, \mathcal{L} is the Lindblad superoperator quantifying the relaxation (radiative and nonradiative) and fluctuations in an excitonic system, \mathcal{H} is the interaction Hamiltonian corresponding to the coupling of the degenerate valley (K and K') with the vacuum field, and \hbar is the reduced Planck’s constant. In the excitation picture, the excitons at K and K' can be modeled as a three-level system (see Fig. 1, left inset) [16]. The exciton population decay rate in the K and K' valleys is given by $\gamma_{K/K'} = \gamma_{K/K'}^{xx} + \gamma_{K/K'}^{yy}$ (radiative and nonradiative decay rates), and the exciton valley coherence corresponds to the coherent superposition of excitons in K and K' valleys. The lifetime of the valley coherence is determined by radiative and nonradiative decay rates and the intervalley scattering rate $\gamma_{K/K'}$. Recently, near-unity quantum yield in MoS$_2$ has been experimentally demonstrated [40,41]; hence, we can assume that $\gamma_{K/K'} \approx \gamma_{K/0}$. An optical selection rule forbids the excitation of K' valley excitons with σ_\parallel polarized light, thus enabling nearly unity valley polarization in monolayers of TMDCs. However, by manipulating the vacuum in the vicinity of the exciton, one can radiatively excite the K' exciton using emission from the K valley exciton and remarkably induce coherence without external coherent source.

We consider an exciton in the lowest energy of the valley K initially prepared by resonant optical excitation. From Eq. (3), using the standard projection operator method [42], we obtained the excitonic density matrix element $\langle c_K | q | c_{K'} \rangle$, which represents the exciton intervalley coherence, at $t \approx 0$, as

$$\frac{\partial}{\partial t} \langle c_K | q | c_{K'} \rangle = -\frac{1}{2} (\kappa + i\Omega). \quad (4)$$

Here, κ and Ω are the vacuum field mediated coupling and frequency shift, respectively, associated with the imaginary and real parts of the scattered field, respectively (see Supplemental Material [36], Sec. 5 for the detailed analysis). Note that we designed the phase profile of the metasurface such that the imaginary part of the scattered field is enhanced, while the real part is suppressed, giving rise to predominant κ ($-1 \leq \kappa \leq 1$) and negligible Ω ($\Omega \approx 0$). Equation (4) implies that, only in the presence of the vacuum field mediated parameters, nonzero exciton valley coherence emerges. For a circularly polarized dipole, the coupling term is given by $\kappa = (\gamma_{xx} - \gamma_{yy})/2$, where γ_{xx} (γ_{yy}) represents the decay rate of a dipole oriented along the x (y) axis. For $\kappa \neq 0$, we need $\gamma_{xx} \neq \gamma_{yy}$, i.e., a structured environment, where different in-plane dipoles decay at different rates. We designed a metasurface that breaks the in-plane isotropic nature of the vacuum at the location of the exciton such that the emission rate for an x-polarized dipole is suppressed, while the decay rate for a y-polarized dipole is symmetrically enhanced. Note that such an engineered anisotropic vacuum increases the contrast between the in-plane decay rates, which enables to maximize the vacuum field mediated coupling. Taking into account all loss channels, we obtained $\gamma_{xx} = 0.53$ and $\gamma_{yy} = 1.47$, which yields $\kappa = -0.47$. Figure 4(a) shows the population of excitons in the K and K' valleys, given by the excitonic density matrix elements $\langle c_K | q | c_K \rangle$ and $\langle c_K | q | c_{K'} \rangle$, respectively. In free space, the K valley exciton decays exponentially (dashed line) with a rate $\gamma_K \approx \gamma_0$ and the K' valley exciton is not excited (due to a selection rule). However, in the presence of a metasurface, the decay rate of the K valley exciton slows down and a finite generation of the K' valley exciton is clearly seen. Figure 4(b) shows the temporal evolution of the exciton valley coherence. In the presence of a metasurface, a finite exciton valley coherence emerges that reaches its maximum value of ~ 0.09 and then
a route to lift the degeneracy in the optical response of in-plane excitonic dipoles. The reported concept of metaphotonics-enabled quantum coherence and interference effects [26,43–46] in TMDC monolayers may pave the way for the integration of designer metasurfaces with two-dimensional materials [47–50] for quantum valleytronic metadevices.

This work was supported by National Science Foundation (EFMA-1542741), the Office of Naval Research Multidisciplinary University Research Initiative program under Grant No. N00014-13-1-0678, and the Gordon and Betty Moore Foundation.

* xiang@berkeley.edu
† These authors contributed equally to this work.

